Course Number:	EET 121	Phone:	419-267-1231
Class Days/Time:	MW 10am - Noon	Office:	E1102
Class Room:	E101	email:	mkwiatkowski@northweststate.edu
Instructor:	Mike Kwiatkowski	Office Hours:	MW: 3 – 5pm TR: 10:30am - Noon
Last Day to withdraw:	See website @northweststate.edu		

DC Circuits EET 121

Course Description:

In this course the student will learn the fundamental principles of electricity with emphasis on DC (direct current) circuits. The concepts of Ohm's Law, the Power Formula, and Kirchoff's Laws will be applied to series, parallel, and series-parallel circuits. Electrical quantities will be defined and the behavior of resistors, inductors, and capacitors under DC conditions will be studied. Complex circuits will be analyzed using the theorems of superposition, and Thevenin and Norton equivalent circuits. The relationship between electricity and magnetism will also be introduced. These topics will be learned through text, presentations, various exercises, and hands-on labs.

This course follows the Ohio TAG (Transfer Assurance Guide) for DC Circuits, OET001.

Prerequisites: MTH090 (proficiency in Algebra)

Required Text:

<u>Principles of Electric Circuits: Conventional Current Version – 9e</u> Floyd, Prentice Hall

Required Supplies:

Online supplement: Computer with Internet connection, access to MyNSCC and WebCT Lab Activity: Digital multimeter (DMM), safety eyewear, and other supplies TBD

Course Objectives:

After completing this course the student will be able to

- 1. Define electrical quantities such as voltage, current, and resistance and recognize common components.
- 2. Apply Ohm's Law, the Power Formula, and Kirchoff's Laws .
- 3. Analyze series, parallel, and series-parallel circuits using mesh and nodal techniques.
- 4. Analyze complex circuits using superposition, and Thevenin and Norton equivalencies.

- 5. Describe the behavior of resistors, capacitors, and inductors under DC conditions.
- 6. Specify the relationship between electricity and magnetism.

Course Grading and Policies:

Grading. There may be homework assignments in each chapter, at least eight (8) hands-on labs, and three (3) exams. The overall grade will be based on these scores along with class participation as follows:

1	Total –	100%
Participation/Attendance		5%
Exams		40%
Hands on Labs		30%
Homework Assignments	25%	

Final grade for the course is based on a ten point scale:

- A = 90% or above
- B = 80-89%
- C = 70-79%
- D = 60-69%
- F = below 60%

Class Participation.

The student is expected to actively participate in all scheduled activities and is responsible for completing assignments on time. This involves checking the course website and/or class e-mail often, at least daily. While it is understood some absences are unavoidable, missing class sessions seriously impairs the student's ability to learn course material. Studies have shown that students learn best and retain knowledge longer when exposed to new material in frequent short doses. "Cramming" for tests and quizzes is counter-productive for meaningful learning. Please stay current with textbook and classroom study.

Out of respect for others in class, please silence or turn off cell phones and music players. Also, workstation computers are not to be used during lectures unless permitted by the instructor.

Homework

Homework will be assigned for each chapter. There will be a declared due date for each assignment. For full credit consideration homework is due on this date. It may be turned in up to a week late after the due date for up to fifty percent (50%) of the homework value.

Exams.

There will be three (3) written exams. The exams will cover material from the immediately preceding units.

Withdraw Information.

Refund and withdrawal dates for this course can be found under the Calendars/Schedule link on the NSCC homepage (www.northweststate.edu). Select the semester and scroll down to the course number.

Withdrawing from a course can affect your financial aid eligibility. The student accepts full responsibility and consequences for withdrawing from classes.

ADA Information.

Any student who feels he/she may need an accommodation based on the impact of a disability should contact me privately to discuss specific needs. Also, please contact the Accessibility Services Office in office A105B or via phone at 419-267-1265 to coordinate reasonable accommodations arising from documented disabilities.

Academic Honesty.

Plagiarism of any type will not be tolerated, for further information, see the college catalog section of the Northwest State website, www.northweststate.edu. All work submitted in class not original to the student must be cited. This includes text, graphics, images, electronic photographs, and the like. *No excuses.*

Student Responsibility.

Students are responsible for material assigned on this syllabus as well as for additional information announced in class. The instructor will not rely totally on material from the textbook. Students are expected to complete all assignments on time.

E-mail Communication.

Electronic-mail (e-mail) is a valuable communication tool and especially useful in distance learning and online education programs. The ease of sending e-mail however has encouraged the loss of writing etiquette and social courtesy. Good message composition has given way to fragments and absent punctuation. I encourage students to read *E-Mail Etiquette: The Do's and Don'ts* in hardcopy or online. **At a minimum, when sending e-mail messages please include in the subject line the class number and section.** For example, "EET121-001: Question on lecture".

Course Schedule.

The course schedule appears below. Please note that the schedule may change with updates posted via e-mail and/or the course website.

Unit	Week of	Торіс	Assignment
1	8/18	IntroductionQuantities and Units	 Read syllabus Read text Chapter 1 View PowerPoint slides 1-1
	8/25	• Voltage, Current, and Resistance	 Read text Chapter 2 View PowerPoint slides 1-2 Chapter 1 homework Lab 1:
2	9/1	Ohm's LawEnergy and PowerPower Formula	 Read text Chapters 3, 4 View PowerPoint slides 2-1
	9/8	Series CircuitsKirchoff's Voltage Law	 Read text Chapter 5 View PowerPoint slides 2-2 Chapter 2 Homework Lab 2:
3	9/15	Parallel CircuitsKirchoff's Current Law	 Read text Chapter 6 View PowerPoint slides 3-1
	9/22	No new material	 Lab 3: Review for exam Exam 1 Chapters 1-6
4	9/29	Series-Parallel CircuitsThe Wheatstone Bridge	 Read text Chapter 7 View PowerPoint slides 4-1
	10/6	DC Voltage/Current SourcesSuperposition Theorem	 Read text Chapter 8 pp. 286-300 View PowerPoint slides 4-2 Lab 4:
5	10/13	Thevenin's TheoremNorton's Theorem	 Read text Chapter 8 pp. 300-325 View PowerPoint slides 5-1
	10/20	Branch Current AnalysisMesh/Loop Current Analysis	 Read text Chapter 9 pp.341-359 View PowerPoint slides 5-2 Lab 5:
6	10/27	Node Voltage Analysis	 Read text Chapter 9 pp. 359-366 View PowerPoint slides 6-1 Lab 6:

	11/3	No new material	 Review for exam Exam 2 Chapters 7-9
7	11/10	Capacitors in DC CircuitsInductors in DC Circuits	Read text Chapters 12, 13View PowerPoint slides 7-1
	11/17	• Electricity and Magnetism	Read text Chapter 10View PowerPoint slides 7-2
8	11/24	Introduction to AC circuitsResidential Electric circuits	 Read supplemental handouts View PowerPoint slides 8-1 Lab 7:
	12/1	Industrial Electric circuits	Review for examLab 8:
	12/8	Final Exam Week	• Exam 3 Chapters 10,12,13